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On Generalized Sasaki Projections’
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Let L be an orthoalgebra, and let (L) be the complete lattice of filters on L.
We describe a natura mapping A: L X §(L) — F(L) that specidizes to the
familiar Sasaki map in the case that L is an orthomodular lattice. The mapping
A is related to the generalized Sasaki map of Bennett and Foulis. The two
mappings are essentially the sameif L is an orthomodular poset, but can be quite
different even for rather well-behaved orthoal gebras.

1. INTRODUCTION

If L is any orthocomplemented lattice, we may define a mapping ¢:
LXL > Lbyd(a b):=al(@ Ob).If LisBoolean, of course, d(a, b)
issimply a 0 b. L is orthomodular iff, for al a, b e L, b, =a O &(a, b)
= h. In this context, ¢ is usualy called the Sasaki map, and the mapping
ba L - L taking b to ¢(a, b) is the Sasaki projection associated with a e
L. Sasaki projections play acrucial rolein the theory of orthomodular lattices.
For instance, they are exactly the closed projections in the Foulis semigroup
of L which they generate [6].

Orthomodular lattices have been generalized successively to orthomodu-
lar posets, orthoalgebras, and, most recently, to effect algebras. The purpose
of this note is to point out a natural extension of the Sasaki map to these
moregeneral contexts. Thisisrelated to the generalized Sasaki map introduced
by Bennett and Foulis [1]. Indeed, the two are essentially the same if E is
an orthomodular poset. However, simple examples show that the two maps
may be quite different even for very simple and well-behaved orthoal gebras.
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In addition to being quite natural from a purely mathematical viewpoint,
the generalized Sasaki map described here has certain heuristic merits, even
in the familiar context of orthoalgebras.

Section 2 outlines a notion of conditioning in the setting of the Foulis—
Piron—Randall formalism of test spaces, supports, and “entities’ [2—5], with
which | shall assume that the reader is familiar. In Section 3 thisis recast in
purely algebraic termsin away that generalizesto effect algebras and connects
in a straightforward way with the generalized Sasaki map of Bennett and
Foulis.

2. THE CONDITIONING MAP

In this section, L is an orthoalgebra and (X, 2() is an algebraic test space
generating L as its logic. Thus, L consists of equivalence classes p(A) of
events A of 2 under perspectivity.

Let = be acollection of supports of 9l, and & is the associated complete
lattice of properties. If p € L, we write X, for the collection of al S e =
such that, for any representative event A € p and any test E with A C E,
SN E C A. Thinking of Sas the set of outcomes that are “possible” in some
state of the entity in question, >, represents the set of states in which p is
certain to be confirmed if tested. The canonical mapping []: L - ¥ is

defined by
ol = |

Note that [] depends tacitly on .

Each equivalence classp = p(A) inthelogic L, construed as atest space
in its own right, can be shown to be algebraic, with logic isomorphic to the
interval [0, p] in L. We write X, for the set of outcomes of this test space,
i.e, X, = Up. It isnot difficult to see that, if Sis a support of 2, then SN
X, is a support of p. This suggests the following construction.

Definition 1. For p e L and S € ¥, let &, 5 denote the collection of
al properties T € & such that T C [p] and TNX, C S We define the
conditioning map yp: &£ — £ by

'Yp(s) = U 2p,S

To motivate this, let 2,5 = = N £, Notice that £, 5 is the complete
sublattice of the interval [0, [p]] in &£ generated by X, s and that y,(S) =
UZ,s The maps p, S— X,sand p, S+— vy, s represent a simple form of
conditioning. If we are given data from a large number of tests of p € L,
al confirming p, and if the actual state of the entity for al of these tests was
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S then dl our data lie in X, N S We will be inclined to infer not only that
p is certain, but that the state of the entity belongs to X, s, and that the
property yp(S is actual.

Example 1. Let X = {a, x, b, y, ¢, zZ} and 2 = {{a, x, b}, {b, v, ¢}, {c,
z,a}} (the so-called “Wright triangl€e”), a Greechie diagram of which isgiven
in Fig. 1. We shall compute y,(S) for p = b’ and S= [Z7 = {b, z v, 7,
where 2 consists of all supports of X. Note that X, = {a, X, y, ¢} and [b]
={a, X, ¥, z c}. Hence, SN X, = {x,y}. The largest support contained in
[b'] having this same intersection with X, is the support {x, y, Z} . Hence,
vw(d) = {xy Z.

Example 2. To illustrate the dependence of y, on =, let 2 be as above,
but suppose that = consists only of the principal properties [p] = X — p*,
where pisan aomof L. Again, S=[7], SN Xy, = {xy}, and [b] = {4, X,
Y, z, ¢}. However, in this case the only elements of > below [b'] are [X] =
{xv,zc [yl ={axyz, [a ={a vy} and [c] = {x.c}. None of these
has intersection with X, = {a, X, y, ¢} contained in {x,y}; hence, in this
setting, vy ([2Z]) = 0.

There is an dternative formulation of v that is in some ways more
appedling:
Theoreml. Foranyp e Land S e &, y(9 = /A[SN Al
Aep

Proof. Suppose that T € £, Then for every event A e p, TN AC
SNA(snceTN X, C SN X,and A C X,). Since T C [p], we have for
every test E containing Athaa TNECA SO TNECTNACSNA
Hence, T € Zsna, Whence T C [S N A]. It follows that v(§ = U £, C
[SN A

Now suppose T C [S N A] for every A € p. Then in particular, since
[SN A] C [A] = [p], we have T C [p]. Now, noting that for any test E
containing Awehave TN A=TNEC SN A, it follows that

TNX=[JTNAC|JSnA=snX,

Aep Aep

Hence, T € £,5 0T C vy(S. =
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Remark. Since the principal properties are meet-dense in &£, we may
extend y to amapping v: £ X & - ¥ via
Ye(9 = Pi}p] VoS = MISN AP € =4}

It is not entirely obvious at this point that -y is realy a generalization of the
Sasaki map. For the record:

Theorem2. Let L bean OML and let 2 be the test space of orthopartitions
of theunitin L. Let X consist of all supports of 2. Then Oa, b € L, vy4([b])

= [4(a, b)].

This will follow easily from the results of the next section.

3. FORMULATION IN TERMS OF IDEALS AND FILTERS

Recall [3] that an ideal in an orthoalgebra (or effect algebra) L is a set
JCLsuchthatOa,be L,a®bed = abeJ Dudly afilteronLis
aset of the form F = J’ := {X'|x € J}. Note that, while ideals are lower
sets in the natural ordering on L, the principal order ideal a |:= {x e L|x
= a} is an orthoalgebra filter for every a € L iff L is an OMP [3]; and of
course, a dual result holds for principal order filters.

If A is any subset of L, we denote by (A) generated by A, i.e, the
smallest ideal of L containing A, and by (A), the filter generated by A. For
A = {a}, we write (a) and (a) rather than ({a}) and ({a}).

Let 2, consist of the finite partitions of unity of L. Then supports of
A, are exactly the complements of ideals of L [3, 4].

Lemma 1. If Aisan event of 2 witha = @ A, [A] = [a] = L\(@').

Proof. Let S be a support and J = L\S the corresponding ideal. Then,
forany E € A, withAC E,wehave SN EC Aiff IN A =0 iff E\A C
Jiff B(E\A) = a’ e J. Hence,

@) = ﬂ{J|a' elJ} = L\U{aa €S =L\[a]. =

We shall now reformulate the conditioning map of Section 2 in terms of
ideals and filters. Let 3(L) and (L) denote, respectively, the lattice of ideals
and the lattice of filters of L. We define mappings

T LXQL) - M) and A LXFL) - FL)
by T,(1) := L\ya(L\I) and A,(F) = To(F").

Lemma 2. Let |,F C L be any ideal and any filter, respectively, of L.
Then for adl a € L:
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@T()=(yelly =a&a-y el}).
() AF) ={y=da-y =yda eF}).

Proof. (a) Let S, T be supports of 2, and let | = L\Sand J = L\T be
the corresponding ideals. Then T C [q] iff (@) C J, i.e, iff @' e J. Also,
TN X, C SN X iff X\SC X,\T, e, iff X, N1 C X, N J. Thus—noting
that X, is just the set of nonzero elements x = a—we have

() = ﬂ{J|a' eJ&y=axellxed}
But thisis just to say that
L) = {a}t U (XaNl))
=({a ®xx=a&xel})
=({@a-x'|x=a&xel})
=({yly =a&a-y el})
(b) In terms of filters, we have
AF) =@ ®x) |x=a&xel})
={@—-xx=a&xel})
={y=a@-y eI}
={y=ada@-y =yda eF}) =

Remark. Notice that conditions (a) and (b) of Lemma 3 make perfectly
good sense if L is replaced by an arbitrary effect algebra. In that case, we
take them as defining the maps I' and A.

Bennet and Foulis [1] introduce (for any effect algebra) the quantity
V(a,b):={x=ab=x®a'}

They then defined their generalized Sasaki projection ®(a, b) to be the set
of all minimal elements of V(a, b) (if any). If L isan OML, there is aunique
minimal element, namely &(a, b).

Theorem 3. Let L be an OMP. Then, for al b € L, A,((b)) = (V(a, b)).
If L satisfies the descending chain condition (in particular, if L isfinite), then
A (b)) = (D(a, b)).

Proof. An orthoalgebra L is an OMP iff the filter (b) generated by b e
L coincides with the principal order-filter {y e L|y = b}. Part (b) of Lemma
2 then yields A,((b)) = {y = alb =y @ a'}), i.e, A((b)) = (V(a, b)) =



974 Wilce

b
/7 N\
X y
/ AN
a z c
u—v—2z
Fig. 2.

(®(a, b)). If L satisfies the descending chain condition, then every element
of V(a, b) lies above a minimal element, so (V(a, b)) = (®(a, b)). =

Notice that this supplies the proof of Theorem 2, since (V(a, b)) = (d(a, b))
for an OML.

Asthefollowing example shows, A,({b)) and (V(a, b)) need not coincide
if L isnot an OMP.

Example 3. Let A = {{a, x, b}, {b, v, c}, {c, z a}, {Z, u, V}}, as
illustrated in Fig. 2. Identifying outcomes with the corresponding propositions
inL,leep=u® Z. Theonly elementsx < pinL are 0, u, Z, and p itself.
The corresponding elementsx & p' = x@ vaev,udbv=227 & v =y,
and 1. Of these, only 1 lies above b. Thus, V(p, b) = {1}. On the other
hand, (b) includes z, s0, assuU @ v =z ue {x = plx D p' € (B)}. Thus, u
€ A ((b)). (Indeed, a little further reflection shows that in this example,
Ay((B)) = (u).)
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