On Generalized Sasaki Projections†

Alexander Wilce1

Received December 8, 1999

Let *L* be an orthoalgebra, and let $\tilde{\gamma}(L)$ be the complete lattice of filters on *L*. We describe a natural mapping $\Delta: L \times \mathfrak{F}(L) \to \mathfrak{F}(L)$ that specializes to the familiar Sasaki map in the case that *L* is an orthomodular lattice. The mapping Δ is related to the generalized Sasaki map of Bennett and Foulis. The two mappings are essentially the same if *L* is an orthomodular poset, but can be quite different even for rather well-behaved orthoalgebras.

1. INTRODUCTION

If *L* is any orthocomplemented lattice, we may define a mapping ϕ : $L \times L \rightarrow L$ by $\phi(a, b) := a \wedge (a' \vee b)$. If *L* is Boolean, of course, $\phi(a, b)$ is simply $a \wedge b$. *L* is orthomodular iff, for all $a, b \in L$, $b, \le a \Rightarrow \phi(a, b)$ $= b$. In this context, ϕ is usually called the *Sasaki map*, and the mapping $\phi_a: L \to L$ taking *b* to $\phi(a, b)$ is the *Sasaki projection* associated with $a \in$ *L*. Sasaki projections play a crucial role in the theory of orthomodular lattices. For instance, they are exactly the closed projections in the Foulis semigroup of *L* which they generate [6].

Orthomodular lattices have been generalized successively to orthomodular posets, orthoalgebras, and, most recently, to effect algebras. The purpose of this note is to point out a natural extension of the Sasaki map to these more general contexts. This is related to the generalized Sasaki map introduced by Bennett and Foulis [1]. Indeed, the two are essentially the same if *E* is an orthomodular poset. However, simple examples show that the two maps may be quite different even for very simple and well-behaved orthoalgebras.

969

0020-7748/00/0300-0969\$18.00/0 q 2000 Plenum Publishing Corporation

[†]This paper is dedicated to the memory of Prof. Gottfried T. Rüttimann.
¹Department of Mathematics and Computer Science, Juniata College, Huntingdon, Pennsylvania 16652; E-mail: wilce@juniata.edu.

In addition to being quite natural from a purely mathematical viewpoint, the generalized Sasaki map described here has certain heuristic merits, even in the familiar context of orthoalgebras.

Section 2 outlines a notion of conditioning in the setting of the Foulis– Piron–Randall formalism of test spaces, supports, and "entities" [2–5], with which I shall assume that the reader is familiar. In Section 3 this is recast in purely algebraic terms in a way that generalizes to effect algebras and connects in a straightforward way with the generalized Sasaki map of Bennett and Foulis.

2. THE CONDITIONING MAP

In this section, L is an orthoalgebra and (X, \mathfrak{A}) is an algebraic test space generating *L* as its logic. Thus, *L* consists of equivalence classes *p*(*A*) of events *A* of $\mathfrak A$ under perspectivity.

Let Σ be a collection of supports of \mathfrak{A} , and \mathfrak{L} is the associated complete lattice of properties. If $p \in L$, we write Σ_p for the collection of all $S \in \Sigma$ such that, for any representative event $A \in p$ and any test *E* with $A \subseteq E$, $S \cap E \subseteq A$. Thinking of *S* as the set of outcomes that are "possible" in some state of the entity in question, Σ_n represents the set of states in which p is certain to be confirmed if tested. The *canonical mapping* [\cdot]: $L \rightarrow \mathcal{L}$ is defined by

$$
[p] = \bigcup \Sigma_p
$$

Note that $[\cdot]$ depends tacitly on Σ .

Each equivalence class $p = p(A)$ in the logic *L*, construed as a test space in its own right, can be shown to be algebraic, with logic isomorphic to the interval $[0, p]$ in *L*. We write X_p for the set of outcomes of this test space, i.e., $X_p = \bigcup_p$. It is not difficult to see that, if *S* is a support of \mathfrak{A} , then *S* \cap X_p is a support of p . This suggests the following construction.

Definition 1. For $p \in L$ and $S \in \mathcal{L}$, let $\mathcal{L}_{p,S}$ denote the collection of all properties $T \in \mathcal{L}$ such that $T \subseteq [p]$ and $T \cap X_p \subseteq S$. We define the *conditioning map* γ_p : $\mathcal{L} \rightarrow \mathcal{L}$ by

$$
\gamma_p(S) := \bigcup \mathcal{L}_{p,S}
$$

To motivate this, let $\Sigma_{p,S} = \Sigma \cap \mathcal{L}_{p,S}$. Notice that $\mathcal{L}_{p,S}$ is the complete sublattice of the interval [0, [*p*]] in \mathcal{L} generated by $\Sigma_{p,S}$ and that $\gamma_p(S)$ = $\bigcup \Sigma_{p,S}$. The maps $p, S \mapsto \Sigma_{p,S}$ and $p, S \mapsto \gamma_{p,S}$ represent a simple form of *conditioning*. If we are given data from a large number of tests of $p \in L$, all confirming *p*, and if the actual state of the entity for all of these tests was

On Generalized Sasaki Projections 971

S, then all our data lie in $X_p \cap S$. We will be inclined to infer not only that p is certain, but that the state of the entity belongs to $\Sigma_{p,S}$, and that the property $\gamma_p(S)$ is actual.

Example 1. Let $X = \{a, x, b, y, c, z\}$ and $\mathcal{X} = \{\{a, x, b\}, \{b, y, c\}, \{c, z\}\}$ *z*, *a*}} (the so-called "Wright triangle"), a Greechie diagram of which is given in Fig. 1. We shall compute $\gamma_p(S)$ for $p = b'$ and $S = [z] = \{b, z, y, z\}$, where Σ consists of all supports of *X*. Note that $X_{b'} = \{a, x, y, c\}$ and $[b']$ $= {a, x, y, z, c}$. Hence, $S \cap X_{b'} = {x,y}$. The largest support contained in [*b'*] having this same intersection with X_{b} is the support {*x*, *y*, *z*}. Hence, $\gamma_{b'}([z]) = \{x, y, z\}.$

Example 2. To illustrate the dependence of γ_a on Σ , let $\mathfrak A$ be as above, but suppose that Σ consists only of the principal properties $[p] = X - p^{\perp}$, where *p* is an atom of *L*. Again, $S = [z]$, $S \cap X_{b'} = \{x,y\}$, and $[b'] = \{a, x,$ *y*, *z*, *c*}. However, in this case the only elements of Σ below [*b'*] are [*x*] = ${x, y, z, c}$, $[y] = {a, x, y, z}$, $[a] = {a, y}$, and $[c] = {x, c}$. None of these has intersection with $X_{b'} = \{a, x, y, c\}$ contained in $\{x,y\}$; hence, in this setting, $\gamma_{b'}([z]) = 0$.

There is an alternative formulation of γ that is in some ways more appealing:

Theorem 1. For any
$$
p \in L
$$
 and $S \in \mathcal{L}$, $\gamma_p(S) = \bigwedge_{A \in p} [S \cap A]$.

Proof. Suppose that $T \in \mathcal{L}_{p,S}$. Then for every event $A \in p$, $T \cap A \subseteq$ *S* \cap *A* (since *T* \cap *X_p* \subseteq *S* \cap *X_p* and *A* \subseteq *X_p*). Since *T* \subseteq [*p*], we have for every test *E* containing *A* that $T \cap E \subseteq A$, so $T \cap E \subseteq T \cap A \subseteq S \cap A$. Hence, $T \in \Sigma_{S \cap A}$, whence $T \subseteq [S \cap A]$. It follows that $\gamma_p(S) = \cup \mathcal{L}_{p,S} \subseteq$ $[S \cap A]$.

Now suppose $T \subseteq [S \cap A]$ for every $A \in p$. Then in particular, since $[S \cap A] \subseteq [A] = [p]$, we have $T \subseteq [p]$. Now, noting that for any test *E* containing *A* we have $T \cap A = T \cap E \subseteq S \cap A$, it follows that

$$
T \cap X_p = \bigcup_{A \in p} T \cap A \subseteq \bigcup_{A \in p} S \cap A = S \cap X_p
$$

Hence, $T \in \mathcal{L}_{p,S}$, so $T \subseteq \gamma_p(S)$. \blacksquare

Remark. Since the principal properties are meet-dense in \mathcal{L} , we may extend γ to a mapping $\gamma: \mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$ via

$$
\gamma_P(S) = \bigwedge_{P \leq [p]} \gamma_P(S) = \bigwedge \{ [S \cap A] | P \in \Sigma_A \}
$$

It is not entirely obvious at this point that γ is really a generalization of the Sasaki map. For the record:

Theorem 2. Let *L* be an OML and let $\mathfrak A$ be the test space of orthopartitions of the unit in *L*. Let Σ consist of all supports of \mathfrak{A} . Then $\forall a, b \in L$, $\gamma_a([b])$ $= [\phi(a, b)].$

This will follow easily from the results of the next section.

3. FORMULATION IN TERMS OF IDEALS AND FILTERS

Recall [3] that an *ideal* in an orthoalgebra (or effect algebra) *L* is a set *J* \subset *L* such that \forall *a*, *b* ∈ *L*, *a* \oplus *b* ∈ *J* \Leftrightarrow *a*, *b* ∈ *J*. Dually, a *filter* on *L* is a set of the form $F = J' := \{x' | x \in J\}$. Note that, while ideals are lower sets in the natural ordering on *L*, the principal order ideal $a \downarrow := \{x \in L | x$ $\leq a$ is an orthoalgebra filter for every $a \in L$ iff *L* is an OMP [3]; and of course, a dual result holds for principal order filters.

If *A* is any subset of *L*, we denote by (*A*) generated by *A*, i.e., the smallest ideal of *L* containing *A*, and by $\langle A \rangle$, the filter generated by *A*. For $A = \{a\}$, we write (*a*) and $\langle a \rangle$ rather than ($\{a\}$) and $\langle \{a\} \rangle$.

Let \mathfrak{A}_L consist of the finite partitions of unity of *L*. Then supports of \mathfrak{A}_L are exactly the complements of ideals of *L* [3, 4].

Lemma 1. If *A* is an event of \mathfrak{A}_L with $a = \bigoplus A$, $[A] = [a] = L \setminus (a')$.

Proof. Let *S* be a support and $J = L\ S$ the corresponding ideal. Then, for any $E \in \mathfrak{A}_L$ with $A \subseteq E$, we have $S \cap E \subseteq A$ iff $J \cap A = \emptyset$ iff $E \setminus A \subseteq$ *J* iff $\bigoplus (E \setminus A) = a' \in J$. Hence,

$$
(a') = \bigcap \{J|a' \in J\} = L \setminus \bigcup \{S|a \in S\} = L \setminus [a]. \quad \blacksquare
$$

We shall now reformulate the conditioning map of Section 2 in terms of ideals and filters. Let $\Im(L)$ and $\Im(L)$ denote, respectively, the lattice of ideals and the lattice of filters of *L*. We define mappings

 $\Gamma: L \times \mathfrak{F}(L) \to \mathfrak{F}(L)$ and $\Delta: L \times \mathfrak{F}(L) \to \mathfrak{F}(L)$

by $\Gamma_a(I) := L \setminus \gamma_a(L \setminus I)$ and $\Delta_a(F) = \Gamma_a(F')$.

Lemma 2. Let $I, F \subset L$ be any ideal and any filter, respectively, of L. Then for all $a \in L$:

On Generalized Sasaki Projections

(a)
$$
\Gamma_a(I) = (\{y \in L | y' \le a \& a - y' \in I\}).
$$

(b) $\Delta_a(F) = \langle \{y \le a | (a - y' = y \oplus a' \in F) \rangle.$

Proof. (a) Let S, T be supports of \mathfrak{A}_L and let $I = L\backslash S$ and $J = L\backslash T$ be the corresponding ideals. Then $T \subseteq [a]$ iff $(a') \subseteq J$, i.e., iff $a' \in J$. Also, $T \cap X_a \subseteq S \cap X_a$ iff $X_a \setminus S \subseteq X_a \setminus T$, i.e., iff $X_a \cap I \subseteq X_a \cap J$. Thus—noting that X_a is just the set of nonzero elements $x \le a$ —we have

$$
\Gamma_a(I) = \bigcap \{ J | a' \in J \& \forall_x \le a, x \in I \Rightarrow x \in J \}
$$

But this is just to say that

$$
\Gamma_a(I) = (\{a'\} \cup (X_a \cap I))
$$

= (\{a' \oplus x | x \le a \& x \in I\})
= (\{(a - x)' | x \le a \& x \in I\})
= (\{y | y' \le a \& a - y' \in I\})

(b) In terms of filters, we have

$$
\Delta_a(F) = \langle \{(a' \oplus x)' \mid x \le a \& x \in I\} \rangle
$$

= $\langle \{(a - x) \mid x \le a \& x \in I\} \rangle$
= $\langle \{y \le a \mid (a - y) \in I\} \rangle$
= $\langle \{y \le a \mid (a - y)' = y \oplus a' \in F\} \rangle$

Remark. Notice that conditions (a) and (b) of Lemma 3 make perfectly good sense if L is replaced by an arbitrary effect algebra. In that case, we take them as *defining* the maps Γ and Δ .

Bennet and Foulis [1] introduce (for any effect algebra) the quantity

$$
\nabla(a, b) := \{ x \le a | b \le x \oplus a' \}
$$

They then defined their generalized Sasaki projection $\Phi(a, b)$ to be the set of all minimal elements of $\nabla(a, b)$ (if any). If L is an OML, there is a unique minimal element, namely $\phi(a, b)$.

Theorem 3. Let L be an OMP. Then, for all $b \in L$, $\Delta_a(\langle b \rangle) = \langle \nabla(a, b) \rangle$. If L satisfies the descending chain condition (in particular, if L is finite), then $\Delta_a(\langle b \rangle) = \langle \Phi(a, b) \rangle.$

Proof. An orthoalgebra L is an OMP iff the filter $\langle b \rangle$ generated by $b \in$ L coincides with the principal order-filter $\{y \in L | y \ge b\}$. Part (b) of Lemma 2 then yields $\Delta_a(b) = \langle \{y \le a | b \le y \oplus a' \} \rangle$, i.e., $\Delta_a(b) = \langle \nabla(a, b) \rangle =$

 $\langle \Phi(a, b) \rangle$. If *L* satisfies the descending chain condition, then every element of $\nabla(a, b)$ lies above a minimal element, so $\langle \nabla(a, b) \rangle = \langle \Phi(a, b) \rangle$.

Notice that this supplies the proof of Theorem 2, since $\langle \nabla(a, b) \rangle = \langle \phi(a, b) \rangle$ for an OML.

As the following example shows, $\Delta_a(\langle b \rangle)$ and $\langle \nabla(a, b) \rangle$ need not coincide if *L* is not an OMP.

Example 3. Let $\mathfrak{A} = \{ \{a, x, b\}, \{b, y, c\}, \{c, z, a\}, \{z', u, v\} \}$, as illustrated in Fig. 2. Identifying outcomes with the corresponding propositions in *L*, let $p = u \oplus z'$. The only elements $x \leq p$ in *L* are 0, *u*, *z'*, and *p* itself. The corresponding elements $x \oplus p' = x \oplus v$ are $v, u \oplus v = z, z' \oplus v = u$, and 1. Of these, only 1 lies above *b*. Thus, $\nabla(p, b) = \{1\}$. On the other hand, $\langle b \rangle$ includes *z*, so, as $u \oplus v = z$, $u \in \{x \leq p | x \oplus p' \in \langle b \rangle\}$. Thus, *u* $\epsilon \Delta_p(\langle b \rangle)$. (Indeed, a little further reflection shows that in this example, $\Delta_p(\langle b \rangle) = \langle u \rangle.$

REFERENCES

- 1. M. K. Bennett and D. J. Foulis, A generalized Sasaki projection for effect algebras, *Tatra Mountains Math. Pub.* **15** (1998), 55–66.
- 2. D. J. Foulis, C. Piron, and C. H. Randall, *Found. Phys.* **13** (1983), 813–841.
- 3. D. J. Foulis, R Greechie, and G. Rüttimann, Filters and supports in orthoalgebras, *Int. J. Theor. Phys.* **31** (1992), 789–807.
- 4. D. J. Foulis, R. Greechie, and G. Rüttimann, Logico-algebraic structures II: supports in test spaces, *Int. J. Theor. Phys.* **32** (1993), 1675–1690.
- 5. S. Gudder, *Quantum Probability Theory*, Academic Press, San Diego, California 1988.
- 6. G. Kalmbach, *Orthomodular Lattices*, Academic Press, New York, 1983.