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On Generalized Sasaki Projections†
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Let L be an orthoalgebra, and let F(L) be the complete lattice of filters on L.
We describe a natural mapping D: L 3 F(L) → F(L) that specializes to the
familiar Sasaki map in the case that L is an orthomodular lattice. The mapping
D is related to the generalized Sasaki map of Bennett and Foulis. The two
mappings are essentially the same if L is an orthomodular poset, but can be quite
different even for rather well-behaved orthoalgebras.

1. INTRODUCTION

If L is any orthocomplemented lattice, we may define a mapping f :
L 3 L → L by f(a, b) :5 a ∧ (a8 ∨ b). If L is Boolean, of course, f(a, b)
is simply a ∧ b. L is orthomodular iff, for all a, b P L, b, # a ⇒ f(a, b)
5 b. In this context, f is usually called the Sasaki map, and the mapping
fa: L → L taking b to f(a, b) is the Sasaki projection associated with a P
L. Sasaki projections play a crucial role in the theory of orthomodular lattices.
For instance, they are exactly the closed projections in the Foulis semigroup
of L which they generate [6].

Orthomodular lattices have been generalized successively to orthomodu-
lar posets, orthoalgebras, and, most recently, to effect algebras. The purpose
of this note is to point out a natural extension of the Sasaki map to these
more general contexts. This is related to the generalized Sasaki map introduced
by Bennett and Foulis [1]. Indeed, the two are essentially the same if E is
an orthomodular poset. However, simple examples show that the two maps
may be quite different even for very simple and well-behaved orthoalgebras.
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In addition to being quite natural from a purely mathematical viewpoint,
the generalized Sasaki map described here has certain heuristic merits, even
in the familiar context of orthoalgebras.

Section 2 outlines a notion of conditioning in the setting of the Foulis–
Piron–Randall formalism of test spaces, supports, and “entities” [2–5], with
which I shall assume that the reader is familiar. In Section 3 this is recast in
purely algebraic terms in a way that generalizes to effect algebras and connects
in a straightforward way with the generalized Sasaki map of Bennett and
Foulis.

2. THE CONDITIONING MAP

In this section, L is an orthoalgebra and (X, A) is an algebraic test space
generating L as its logic. Thus, L consists of equivalence classes p(A) of
events A of A under perspectivity.

Let ( be a collection of supports of A, and + is the associated complete
lattice of properties. If p P L, we write (p for the collection of all S P (
such that, for any representative event A P p and any test E with A # E,
S ù E # A. Thinking of S as the set of outcomes that are “possible” in some
state of the entity in question, (p represents the set of states in which p is
certain to be confirmed if tested. The canonical mapping [?]: L → L is
defined by

[p] 5 ø(p

Note that [?] depends tacitly on (.
Each equivalence class p 5 p(A) in the logic L, construed as a test space

in its own right, can be shown to be algebraic, with logic isomorphic to the
interval [0, p] in L. We write Xp for the set of outcomes of this test space,
i.e., Xp 5 øp. It is not difficult to see that, if S is a support of A, then S ù
Xp is a support of p. This suggests the following construction.

Definition 1. For p P L and S P +, let +p,S denote the collection of
all properties T P + such that T # [p] and TùXp # S. We define the
conditioning map gp: + → + by

gp(S) :5 ø+p,S

To motivate this, let (p,S 5 ( ù +p,S. Notice that +p,S is the complete
sublattice of the interval [0, [p]] in + generated by (p,S and that gp(S) 5
ø(p,S. The maps p, S ° (p,S and p, S ° gp,S represent a simple form of
conditioning. If we are given data from a large number of tests of p P L,
all confirming p, and if the actual state of the entity for all of these tests was
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S, then all our data lie in Xp ù S. We will be inclined to infer not only that
p is certain, but that the state of the entity belongs to (p,S, and that the
property gp(S) is actual.

Example 1. Let X 5 {a, x, b, y, c, z} and A 5 {{a, x, b}, {b, y, c}, {c,
z, a}} (the so-called “Wright triangle”), a Greechie diagram of which is given
in Fig. 1. We shall compute gp(S) for p 5 b8 and S 5 [z] 5 {b, z, y, z},
where ( consists of all supports of X. Note that Xb8 5 {a, x, y, c} and [b8]
5 {a, x, y, z, c}. Hence, S ù Xb8 5 {x,y}. The largest support contained in
[b8] having this same intersection with Xb8 is the support {x, y, z}. Hence,
gb8([z]) 5 {x, y, z}.

Example 2. To illustrate the dependence of ga on (, let A be as above,
but suppose that ( consists only of the principal properties [p] 5 X 2 p',
where p is an atom of L. Again, S 5 [z], S ù Xb8 5 {x,y}, and [b8] 5 {a, x,
y, z, c}. However, in this case the only elements of ( below [b8] are [x] 5
{x, y, z, c}, [y] 5 {a, x, y, z}, [a] 5 {a, y}, and [c] 5 {x,c}. None of these
has intersection with Xb8 5 {a, x, y, c} contained in {x,y}; hence, in this
setting, gb8([z]) 5 0.

There is an alternative formulation of g that is in some ways more
appealing:

Theorem 1. For any p P L and S P +, gp(S) 5 `
APp

[S ù A].

Proof. Suppose that T P +p,S. Then for every event A P p, T ù A #
S ù A (since T ù Xp # S ù Xp and A # Xp). Since T # [p], we have for
every test E containing A that T ù E # A, so T ù E # T ù A # S ù A.
Hence, T P (SùA, whence T # [S ù A]. It follows that gp(S) 5 ø +p,S #
[S ù A].

Now suppose T # [S ù A] for every A P p. Then in particular, since
[S ù A] # [A] 5 [p], we have T # [p]. Now, noting that for any test E
containing A we have T ù A 5 T ù E # S ù A, it follows that

T ù Xp 5 ø
APp

T ù A # ø
APp

S ù A 5 S ù Xp

Hence, T P +p,S, so T # gp(S). n

Fig. 1.
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Remark. Since the principal properties are meet-dense in +, we may
extend g to a mapping g: + 3 + → + via

gP(S) 5 `
P#[p]

gp(S) 5 `{[S ù A].P P (A}

It is not entirely obvious at this point that g is really a generalization of the
Sasaki map. For the record:

Theorem 2. Let L be an OML and let A be the test space of orthopartitions
of the unit in L. Let ( consist of all supports of A. Then ∀a, b P L, ga([b])
5 [f(a, b)].

This will follow easily from the results of the next section.

3. FORMULATION IN TERMS OF IDEALS AND FILTERS

Recall [3] that an ideal in an orthoalgebra (or effect algebra) L is a set
J # L such that ∀a, b P L, a % b P J ⇔ a, b P J. Dually, a filter on L is
a set of the form F 5 J 8 :5 {x8.x P J}. Note that, while ideals are lower
sets in the natural ordering on L, the principal order ideal a ↓:5 {x P L.x
# a} is an orthoalgebra filter for every a P L iff L is an OMP [3]; and of
course, a dual result holds for principal order filters.

If A is any subset of L, we denote by (A) generated by A, i.e., the
smallest ideal of L containing A, and by ^A&, the filter generated by A. For
A 5 {a}, we write (a) and ^a& rather than ({a}) and ^{a}&.

Let AL consist of the finite partitions of unity of L. Then supports of
AL are exactly the complements of ideals of L [3, 4].

Lemma 1. If A is an event of AL with a 5 % A, [A] 5 [a] 5 L \ (a8).

Proof. Let S be a support and J 5 L \S the corresponding ideal. Then,
for any E P AL with A # E, we have S ù E # A iff J ù A 5 0⁄ iff E \A #
J iff %(E \A) 5 a8 P J. Hence,

(a8) 5 ù{J.a8 P J} 5 L \ø{S.a P S} 5 L \ [a]. n

We shall now reformulate the conditioning map of Section 2 in terms of
ideals and filters. Let J(L) and F(L) denote, respectively, the lattice of ideals
and the lattice of filters of L. We define mappings

G: L 3 J(L) → J(L) and D: L 3 F(L) → F(L)

by Ga(I ) :5 L \ga(L \ I ) and Da(F ) 5 Ga(F 8).

Lemma 2. Let I,F # L be any ideal and any filter, respectively, of L.
Then for all a P L:
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(a) Ga(I ) 5 ({y P L.y8 # a & a 2 y8 P I}).
(b) Da(F ) 5 ^{y # a.(a 2 y8 5 y % a8 P F}&.

Proof. (a) Let S, T be supports of AL and let I 5 L \S and J 5 L \T be
the corresponding ideals. Then T # [a] iff (a8) # J, i.e., iff a8 P J. Also,
T ù Xa # S ù Xa iff Xa \S # Xa \T, i.e., iff Xa ù I # Xa ù J. Thus—noting
that Xa is just the set of nonzero elements x # a—we have

Ga(I ) 5 ù{J.a8 P J & ∀x # a, x P I ⇒ x P J}

But this is just to say that

Ga(I ) 5 ({a8} ø (Xa ù I ))

5 ({a8 % x.x # a & x P I})

5 ({(a 2 x)8 .x # a & x P I})

5 ({y.y8 # a & a 2 y8 P I})

(b) In terms of filters, we have

Da(F ) 5 ^{(a8 % x)8 .x # a & x P I}&

5 ^{(a 2 x).x # a & x P I}&

5 ^{y # a.(a 2 y) P I}&

5 ^{y # a.(a 2 y)8 5 y % a8 P F}& n

Remark. Notice that conditions (a) and (b) of Lemma 3 make perfectly
good sense if L is replaced by an arbitrary effect algebra. In that case, we
take them as defining the maps G and D.

Bennet and Foulis [1] introduce (for any effect algebra) the quantity

¹(a, b) :5 {x # a.b # x % a8}

They then defined their generalized Sasaki projection F(a, b) to be the set
of all minimal elements of ¹(a, b) (if any). If L is an OML, there is a unique
minimal element, namely f(a, b).

Theorem 3. Let L be an OMP. Then, for all b P L, Da(^b&) 5 ^¹(a, b)&.
If L satisfies the descending chain condition (in particular, if L is finite), then
Da(^b&) 5 ^F(a, b)&.

Proof. An orthoalgebra L is an OMP iff the filter ^b& generated by b P
L coincides with the principal order-filter {y P L.y $ b}. Part (b) of Lemma
2 then yields Da(^b&) 5 ^{y # a.b # y % a8}&, i.e., Da(^b&) 5 ^¹(a, b)& 5
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Fig. 2.

^F(a, b)&. If L satisfies the descending chain condition, then every element
of ¹(a, b) lies above a minimal element, so ^¹(a, b)& 5 ^F(a, b)&. n

Notice that this supplies the proof of Theorem 2, since ^¹(a, b)& 5 ^f(a, b)&
for an OML.

As the following example shows, Da(^b&) and ^¹(a, b)& need not coincide
if L is not an OMP.

Example 3. Let A 5 {{a, x, b}, {b, y, c}, {c, z, a}, {z8, u, v}}, as
illustrated in Fig. 2. Identifying outcomes with the corresponding propositions
in L, let p 5 u % z8. The only elements x # p in L are 0, u, z8, and p itself.
The corresponding elements x % p8 5 x % v are v, u % v 5 z, z8 % v 5 u,
and 1. Of these, only 1 lies above b. Thus, ¹( p, b) 5 {1}. On the other
hand, ^b& includes z, so, as u % v 5 z, u e {x # p.x % p8 e ^b&}. Thus, u
e Dp(^b&). (Indeed, a little further reflection shows that in this example,
Dp(^b&) 5 ^u&.)
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